If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-36+9x+x^2=0
a = 1; b = 9; c = -36;
Δ = b2-4ac
Δ = 92-4·1·(-36)
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-15}{2*1}=\frac{-24}{2} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+15}{2*1}=\frac{6}{2} =3 $
| 2/9b=36 | | -5=x-5+7x | | 8=5w-37 | | 7x−(2+x)=2(3x−1) | | -3(2n+1)=7=-5 | | 9x+4(4x-3)=14 | | 3-5n+2=-5 | | 4x-32=8x | | 5x-6-(x+1)=-7x-2 | | (−5+x)2=−9 | | 2+3m=2m+11 | | t-4=48 | | 7m-2+3=22 | | -8(s+3)=-28 | | 2n+3(n-2)=6n-5 | | 6=-8k+2k | | x/47=3/4 | | 5x+5=5+x | | -k+6k=15 | | 2b^2-3b+5=0 | | 4+2n+7=11 | | 2x-6=19-3x | | 40p+9(1.5p)=722.25 | | 14t+13t^2=0 | | 8b-6b=16 | | (x-9)^2=25 | | 2(x-9)=-4 | | M+2(m+1=14 | | (q-10)*6=30 | | 2(m+4)=5m-8 | | -11n+2=9n-2 | | 5x−12+2x=3+7x−14 |